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This approach is being explored for each physical 
component of the NSF/DOE CESM.

These models are being 
developed under the joint 
NCAR/LANL Model for 
Prediction Across Scales 
(MPAS) project.

This approach allows us to 
conduct regional climate 
simulations within a global 
modeling framework.



AGU: Regional Climate Modeling II, December 6, 2011

Success:  A Robust Dynamical Core with Multi-Resolution Grids,  Atmosphere

Full CAM4 physics using two meshes: a global 30km mesh and a variable 30km-240km mesh. 
The energy spectra are, far all practical purposes, identical.
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The global mesh has 
10km resolution in the 
North Atlantic and 
80km resolution 
elsewhere.

Significant eddy activity 
is associated with the 
North Atlantic current 
system, including 
evidence of the 
Northwest Corner.

Important conservation 
properties (mass, 
tracers, potential 
vorticity and energy) 
are maintained, even 
when using a variable 
resolution mesh.

Success:  A Robust Dynamical Core on Multi-Resolution Grids, Ocean

10 km
resolution

80 km
resolution

mesh
transition

zone

Surface kinetic energy from a global, real-bathymetry ocean simulation.
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region of 
high resolution

N : total number of degrees of freedom

R : radius of sphere (km)

dxf : grid spacing in high-res region (km)

↵ : angular width of high-res region (radians)

� : low-res grid spacing / high-res grid spacing

↵

 high resolution  low resolution

For our North America mesh we have    =8 and     =40 degrees. 
More than 90% of our degrees of freedom residing in our high-resolution region. 

� ↵

Success:  A Global Modeling Framework for Free,  Analysis
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Success:  A Global Modeling Framework for Free, Implications

With 90% of the work in the high-
resolution region, the “global framework” 
is obtained for only a 10% cost.  

The cost-benefit makes the global, multi-
resolution approach a compelling 
alternative to the limited-area approach.

This new modeling capabilities now 
presents the opportunity for the two 
communities to use the same global 
modeling framework.
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Challenges: Scale-Aware Physics,  Atmosphere

precipitation (mm/day)precipitable water (kg/m2)

Gross features of the climate, like precipitable water, change with 
resolution because of the action of the physical parameterizations.

These are results 
from CAM4 physics 
run in aqua-planet 
mode forced with 
zonally-symmetric 
SST.

Precipitable water 
and precipitation 
change dramatically 
between the global 
30km and global 240 
km simulations.

Thus, for the variable 
resolution run, the 
flow into the 30km 
region is “balanced” 
for the 240km region.
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Challenges: Scale-Aware Physics,  Atmosphere

240km resolution everywhere, except 30km resolution within circle.

flow from the east

fluid is in 30km region,
but is equilibrated to the
relatively dry “240km” climate.

fluid is in 240km region,
but is equilibrated to the
relatively wet “30km” climate.

This very simple setting provides a marvelous opportunity to create, 
implement and test scale-aware physical parameterizations.



AGU: Regional Climate Modeling II, December 6, 2011

Challenges: Scale-Aware Physics,  Ocean

high-resolution

low-resolution

transition
region

Mesoscale ocean eddies are an important mechanism  for the poleward transport 
of heat. Thus, these eddies must be either resolved or parameterized.

Eddies permitted in this 
region, thus parameterization

must be “turned off.”

Eddies not resolved in this 
region, thus parameterization 

must be “turned on.”

Not really sure what will 
happen here!
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Challenges: Computational Efficiency

higher resolution

faster

The flexibility in the mesh structure comes at the cost of having to leave the friendly 
world of structured data access for the brave new world of unstructured meshes.

Comparison between the Parallel Ocean Program (structured data)
and the MPAS Ocean model (unstructured data)

Per degree of freedom, MPAS-O is (presently) 2X to 3X slower than POP.

POP

MPAS-O
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Conclusions

Prototype, multi-resolution, global atmosphere and ocean models 
are now being evaluated.

Early results are promising.  When configured with multiple 
resolutions, these dynamical cores act like their globally-uniform 
counterparts at high and low resolution.

The grand challenge is now the creation of a suite of physical 
parameterizations that act appropriately across a wide range of 
spatial scales.

The effort needed to produce scale-aware physics will likely be 
significantly greater than was needed to produce scale-aware 
dynamical cores.


